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INTRODUCTION 
 
The architecture of some contemporary test and measurement instrument platforms1 invites 
recognition of two primary functional blocks (Figure 1): 
 

• Acquire raw physical response/stimulus signal samples from a device or system under test 
(DUT), and convert these samples to a digital format (orange color in Figure 1)2. 

 
• Manipulate, output, store processed signal data or characterization information derived from 

it. These functions are typically encapsulated as an embedded computer (CPU) with 
graphical user interface (GUI), file storage, and network facilities (aqua color in Figure 1)3. 

 

 

                                                 
1 For a description and graphic of such instruments connected in a representative setup, see Rowe, M. Aug 1999. 
2 From the point of view of this paper, a DUT can be anything from a high-performance intelligent device, to a 
monstrous roll of copper cable – see (a) Bhattacharya, et. al, and (b) Rowe, M. Oct 2004. 
3 Pervasive embedded computing in the test environment is illustrated in Rowe, M. Feb 2007. The graphic there shows a 
number of functional blocks, the majority of which contain embedded processors. 



 
This design partition can play a role in managing cost and performance both for those who use such 
platforms in field applications4, and for those who develop and market these instruments5. 
 
Software development for test and measurement products is complicated by the cost and bulk of 
the instrument platform (Figure 1). In order to test new or modified instrument software, each 
developer must have access to an appropriately fitted physical instrument platform together with the 
device or system being tested (DUT), cables and accessories. If activity increases over time, this can 
become expensive and logistically challenging for product development organizations.  
 
Also, with some types of test and measurement applications, calibration or other exacting 
measurement setups can occupy a significant part of cost and activity budgets6,7. Whether the task 
is to gather real-time device data in the field or to test software in the development lab, rigorous 
setup procedures or may be required to ensure correct measurement targeting, or to ensure accuracy 
or precision of measurements. Where specialized or custom setups involve many physical 
connections between instrument and DUT, cost or error likelihood associated with such procedures 
can grow exponentially with incremental expansion of setup functionality8. 
 
Though metrology and instrumentation professionals develop powerful, novel approaches for 
reducing measurement uncertainty9 thereby improving instrument performance, little attention has 
been focused on the specific problem of testing instrument processing software in the presence of 
residual measurement noise and drift. 
 
Susan Wood proposed an elegant method for partially decoupling setup issues - or even the 
instrument platform itself – from instrument software development and testing (Figure 1a). The 
method relies on partitioning the instrument platform as described above. The data path segment 
symbolized by the orange arrow (Figure 2) becomes a shunt point for extracting and re-injecting 
raw DUT data (signal sample values from the instrument detector(s)). 
 

                                                 
4 See (a) Reed, G. 12 May 2008, and (b) Rowe, M. 1 Nov 2007. 
5 Nelson, R. Apr 2001 
6 Lyahou, pp. 752-757. 
7 Delic-Ibukic, pp. 1175-1179. 
8 See (a) Mayer, J. Nov 2002, and (b) Rowe, M. May 2000. 
9 See (a) Maugard, et. al.,  (b) Jenkins, K., and (c) Farahmand, et. al. 
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Method for standardizing error seen by the processing software 
Figure 1a 

 
 
This shunt point is accessed to “record” DUT physical data (stimulus and response signal sample 
values) by writing data to a disk file10 (Figure 2a). At a later time, the recorded file data is used to 
simulate (“play-back”) the DUT sample values (Figure 2b)11. The instrument behaves as designed 
in the presence of these exactly reproduced sample values.  
 

CPU & User Interface

Data Acquisition & 
Conversion

DUT

INSTRUMENT PLATFORM

SIMULATOR

Figure 2a
Simulator in Record Mode

(Record)

CPU & User Interface

INSTRUMENT PLATFORM

SIMULATOR

Simulator in Playback Mode

(Playback)

Figure 2b  
 

                                                 
10 We sometimes use the term “disk” as a convenience to mean “file system”. 
11 We use the terms “simulate” and “simulator” for convenience – not to imply mathematical simulation or modeling. 
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In Figure 2, the thick orange arrows represent DUT signal data as catered by the front-end to the 
processing unit. The smaller blue arrows represent signal content formatted for file system storage 
and retrieval. The blue blocks marked “SIMULATOR” should be implemented only in software. 
 
Once recorded, file data can be played back indefinitely and transferred among instruments and 
network storage as desired. Also, people should be able to edit or generate such recorded data 
offline, then play-back the data on target instruments as desired. This method could be applied to 
the generation of signal data sets for test and measurement applications, and to the generation of 
behavioral models for devices and systems. 
 
 
Decoupling setup issues 
 
The use of recorded sample data can mitigate effort and uncertainty involved in reproducing the 
exact setup characteristics from one measurement instance to another. 
 
As one example, suppose a certain instrument software module has two mutually exclusive 
behaviors “original” and “modified”. Suppose one wants to determine the effect of the modification. 
Suppose also that the modification must be tested by observing a result that normally depends on 
both the software performance and the hardware measurement setup. It could be helpful to set up 
and obtain the measurement using “original” behavior, while saving the DUT samples using the 
Simulator’s Record Mode. Then the “modified” software could be tested using another repetition of 
the same signal samples using the Simulator’s Playback Mode. This tactic eliminates the possibility 
of hardware calibration or setup errors creeping in between the two test events, and focuses 
resolving power on the difference between the two software behaviors. 
 
 
Decoupling the platform 
 
The “greyed-out” areas in Figure 2b are those components that are non-functional during Playback 
Mode. With the grey components removed, Figure 2b potentially could represent a desktop or 
laptop PC running the instrument software application together with the Simulator software – a 
“virtual instrument”12. Depending on an organization’s software development and testing activities, 
replacing some fraction of the physical instrument plant with ordinary PC workstations (Figure 3) 
could yield substantial cost savings. 
 
For example, suppose the instrument and Simulator software implementations may be run on a 
developer’s desktop workstation. Suppose also that development and testing of GUI-only features 
for the instrument occupies part of an organization’s activity budget. If these activities are separated 
from development and test activities that require the full instrument platform, then the organization 
could keep only a small number of physical instruments for essential work (including the recording 
of DUT sample sessions for later use) and do the remaining work on PC workstations13. 

                                                 
12 This depends on computing platform compatibility with the instrument and Simulator software. Modern test 
instruments facilitate this potential by running commercial operating system software. See, for example,  
(a) TMW:News Briefs Jul 2008, and  (b) Nelson, R. Apr 2001 
13 A 2008 informal inventory in one such organization counted scores of instruments allocated to software development, 
each representing a cost in the high five figures. 
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Basic design 
 
The general design of a Record/Playback DUT Simulator should incorporate the following features. 
 

• A representation of DUT signal samples acquired by the target instrument, including all 
random and systematic error components associated with the instrument hardware, can be 
stored in a suitably formatted disk file f. 

 
• The target instrument can access file f and transform its contents into an exact reproduction 

of the instrument behavior that would be expected in response to the original DUT signal 
samples. 

 
• The format of file f enables recognition and representation in some form by any computer 

processing platform with suitable software, including a “virtual instrument” such as a 
desktop PC or foreign instrument type. 

 
• In principle, a person or software process could edit the content of file f (perhaps using 

suitable format translation), in order to specifically and determinately modify resulting 
instrument behavior. 
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Practical concerns 
 

• In Playback Mode, response to recorded signal data may depend on the instrument’s 
instantaneous state (or the PC software model’s representation of instantaneous state), which 
may not match the instantaneous state of the instrument which originally recorded the data. 

 
• The blue Simulator software block on the right side of Figure 3 may require additional 

facilities to simulate timing and control signals normally generated by the instrument 
platform hardware – since in this case the instrument hardware is “missing in action”. 

 
• Neither Record nor Playback operation should place a significant performance load on the 

instrument relative to its normal processing cycle. 
 
• Sample data contained a disk file and available for Playback could in principle be edited or 

even generated by external processes. 
 
Each of the above issues will be addressed in some detail below. 
 
 
Summary 
 
Bozarth developed a Record/Playback Simulator software package that runs on the embedded 
computer of an instrument used widely for industrial and scientific test and measurement 
applications. This implementation targets a portable disk file containing information sufficient to 
drive the target instrument’s signal sample processing software in the same manner that physical 
DUT stimulus and response signal samples normally drive the instrument’s processing software. 
The source of the signal samples is transparent to the target instrument’s processing software. 
 
Bozarth also developed a separate package of Record/Playback data analysis tools, including a 
command-line compression/decompression utility that works with files that the Record/Playback 
Simulator typically writes and reads. 
 
The following describes the requirements, design, implementation, and verification of the 
Record/Playback system and its associated software tools. 
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RECORD/PLAYBACK SIMULATOR REQUIREMENTS 
 
As suggested above, the record/playback simulator software (hereafter denoted “Simulator”) is of 
modular design, and interacts with the pre-existing software that normally controls the target 
instrument (hereafter denoted “Instrument”). 
 
An Instrument may be either a physical instrument or a “virtual instrument” such as a desktop PC 
(Figure 3). In either case the Instrument’s computing processor runs its normal software integrated 
with the Simulator. If the Instrument is a virtual instrument, some “Hardware Timing Simulation” 
software may be needed to simulate the behavior of physical instrument hardware (Figure 4). 
 
The Simulator has a state variable Mode with three states: Off, Record, and Playback. 
 
The Simulator has a state variable FileSpec, from which the instrument can determine a unique 
read/write file specifier in its attached network file system domain.  
 
The Operator (human or software system) is able to read and modify the states of Mode and 
FileSpec, and to operate the Instrument in the normally expected ways. 
 
At any specific time the Instrument has a determinate state, a set of variables. Correct response of 
the Instrument to recorded Samples may depend on the values of a certain well-defined subset of 
these state variables. We use the term “State” to denote this critical subset of Instrument variables 
(Figure 4). The Instrument may change State at any time after the Instrument has finished 
processing a Sweep event, and before the Instrument generates a new Sweep event. 
 
 

 
 
 
Each following instance of (i, j, k, n, m) represents a set of non-negative integers. 
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Sweep 
 
Independently of the Simulator, the Instrument is designed to sweep values of an independent 
variable vector X over a configured range resulting in a sequence of measurement vectors (hereafter 
denoted by “Sweep”14), and to detect values of a dependent variable vector Y. 
 
Also independently of the Simulator: For each Sweep element i, the Instrument applies to the DUT 
a set of stimulus signals having known characteristic Xi, and measures a set of DUT response 
signals having unknown characteristic Yi. The instantaneous detected vectors Xi and Yi are 
incorporated into a sample vector Si (hereafter denoted by “Sample”)15. 
 
The Simulator detects each instance of the Instrument initiating a sweep event. Note that some 
Instrument may routinely generate multiple Sweeps during a single sweep event cycle. 
 
When a Sweep occurs and the Simulator is in Record Mode, the Simulator collects all the Samples 
corresponding to the Sweep, and stores them together in a single disk file record (Figure 5). 
 

 
 

When a Sweep occurs and the Simulator is in Playback Mode, the Simulator reads a Sweep record 
from its disk file (or memory object), and delivers the contained Samples to the instrument software 
in the same manner as the software normally expects physical DUT Samples. The Instrument 
software ignores any physical DUT signals that may be present. 
 
While the Simulator is in Record Mode, it will continue writing successive Sweeps to the disk file 
(or file buffer) specified by FileSpec in such a way as to preserve the sequence of original Sweeps 

                                                 
14 We use the non-capitalized word “sweep” to denote hardware-related activity of the Instrument. 
15 Without loss of generality, a target class of instruments may physically detect both the applied stimulus near the point 
of application to the DUT, and the DUT response near its point of emanation from the DUT. 
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(Figure 5). While the Simulator is in Playback Mode, it will continue reading successive Sweeps 
from its disk file (or file buffer) in such a way as to preserve the sequence of the recorded Sweeps. 
 
 
The fundamental use case 
 

• A physical instrument has State A. Operator addresses this Instrument. 
• Operator sets Simulator FileSpec = Z. 
• Operator sets Simulator Mode = Record. 
• Instrument performs a sequence of n sweep events, processing Samples from DUT. 
• Operator sets Simulator Mode = Off. 
• …  
• Some Instrument has State A and can access file Z. Operator addresses this Instrument. 
• Operator sets Simulator FileSpec = Z. 
• Operator sets Simulator Mode = Playback. 
• Instrument performs a sequence of n sweep events, processing Samples from file Z. 
• Operator sets Simulator Mode = Off. 

 
This is the simplest use case, serving as a basic functional test for the Simulator. No change of 
Instrument State or Simulator FileSpec occurs, and the number of recorded Sweeps n is the same as 
the number of playback Sweeps. 
 
Staying in step with changes of Instrument State 
 

• A physical instrument has State A0. Operator addresses this Instrument. 
• Operator sets Simulator FileSpec = Z. 
• Operator sets Simulator Mode = Record. 
• FOR j = 0 to (n-1) DO 

o Instrument acquires State Aj 
o Instrument performs a sequence of kj sweep events, processing Samples from DUT. 

• Operator sets Simulator Mode = Off. 
• …  
• Some Instrument has State A0 and can access file Z. Operator addresses this Instrument. 
• Operator sets Simulator FileSpec = Z. 
• Operator sets Simulator Mode = Playback. 
• FOR j = 0 to (n-1) DO 

o Instrument acquires State Aj 
o Instrument performs a sequence of kj sweep events, processing Samples from file Z. 

• Operator sets Simulator Mode = Off. 
 
As with the fundamental case, the playback activity should faithfully reproduce the original 
behavior of the Instrument while recording Sweeps, since the Instrument State always matches. An 
example of this use case would be to record and playback a fixed setup or calibration routine, using 
just one Simulator disk file. 
 
Note that this is merely an extension (n > 1) of the fundamental use case (n = 1). 
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Addressing multiple files 
 

• A physical instrument has State A. Operator addresses this Instrument. 
• Operator sets Simulator Mode = Record. 
• FOR j = 0 to (n-1) DO 

o Operator sets Simulator FileSpec = Zj 
o Instrument performs a sequence of kj sweep events, processing Samples from DUT. 

• Operator sets Simulator Mode = Off. 
• …  
• Some Instrument has State A and can access all files Z. Operator addresses this Instrument. 
• Operator sets Simulator Mode = Playback. 
• FOR j = 0 to (n-1) DO 

o Operator sets Simulator FileSpec = Zj 
o Instrument performs a sequence of kj sweep events, processing Samples from file Zj 

• Operator sets Simulator Mode = Off. 
 
Again we have extended the fundamental use case, keeping multiple files to store and playback data 
corresponding to various subroutines. 
 
Note that State changes and FileSpec changes could be used together either in hierarchical or 
interleaved fashion. We have not tried to list all the possible use case forms. 
 
Similarly, the Operator could address a sequence of multiple Instruments for recording and 
playback. In order to do so using the model presented in this paper (Figure 4), the Operator would 
need to address each individual Instrument with its own instance of the Simulator software. (A 
different architecture might provide a single standalone Simulator instance that could connect with 
various Instruments over a network.) 
 
Whether addressing a single Instrument or multiple Instruments, the Operator should ensure that the 
Instrument State at the time of playback for each Sweep corresponds with the State that existed at 
the time of recording that Sweep. 
 
Consider also that for use cases more complex than the fundamental, Simulator activity could be 
more conveniently managed by a script or software application Operator than by a human Operator. 
 
 
Excess number of Sweeps 
 
Recall that a single recorded Simulator file contains zero or more Sweeps that can be played back in 
the same sequence they were recorded. Suppose that while in Playback Mode, the Instrument 
continues generating sweep events until all the recorded Sweeps in the file have been delivered to 
the Instrument for processing. Suppose then the Instrument generates another Sweep event while 
the Simulator is in Playback Mode and its FileSpec remains unchanged – what should the Simulator 
do?  
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Two obvious answers are: (1) Do nothing since the end of the file has been reached, or (2) Start 
over at the beginning of the recorded file’s sequence and continue delivering Sweeps to the 
Instrument. 
 
We believe this should be an implementation decision, perhaps configured in software and 
modifiable by the Operator to match specific test or measurement applications. In the 
implementation described below, we opted to have the Simulator cycle through its recorded file 
until the Operator changes the state of either Mode or FileSpec. 
 
The following use case diverges from those above. 
 
 
Dissimilar States 
 
If for any reason the Instrument State during Playback differs from the corresponding State during 
Record, the Simulator should be able to detect this condition and respond gracefully. 
 
For the implementation described below, we reasoned that having the Instrument respond 
incorrectly or unexpectedly to a recorded Sweep would be undesirable. It appeared that the task of 
accommodating the Simulator’s behavior to various instances of mismatched State, might be better 
left to future development efforts. 
 
We set up our Simulator to do the following each time the Instrument generates a sweep event:  
 

• Iterate forward from the most recently processed Sweep in the file, seeking the next 
recorded Sweep that matches the current Instrument State. 

 
• If a matching Sweep is found, then deliver it to the Instrument for processing. 

 
• If no matching Sweep is found, then obtain a default Sweep from a stored configuration, and 

deliver this to the Instrument for processing. 
 
Note that matching a Sweep to its original state would require storing State information along with 
each Sweep in the disk file. Refinement of this nature is discussed in later sections on Design and 
Implementation. 
 
 
File compression 
 
There is no inherent requirement that Record/Playback files should be compressed; however, some 
advantages of compressing files in other contexts could apply here – storage efficiency and possibly 
time performance improvement. 
 
As in other contexts, early attention to some details of design and implementation can help to 
manage the size of Record/Playback files.16

                                                 
16 See, for example, the inclusion of flagged data fields in our discussion of “File, Data Structure, and Container Issues” 
under Implementation.  
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A compression/decompression utility for Record/Playback files should have, at minimum, the 
following characteristics: 
 

• lossless encoding and decoding: the original file must be exactly reproducible from the 
encoded file. (This follows from the same constraint on the Record/Playback Simulator.) 

 
• compression performance sufficient to justify enhanced development and maintenance 

costs 
 
Also, one would prefer the utility to be integrated or closely-coupled with the Record/Playback 
software, so that no explicit, additional file conversion steps would be needed to store and retrieve 
Record/Playback data. This implies an additional requirement for negligible time performance 
penalty for both compression and decompression17, 18. 
 
 
Data tools 
 
It would be helpful to have tools for inspecting and modifying Record/Playback file contents. As 
mentioned elsewhere in this paper, such tools could be integrated with the Record/Playback 
software. Another approach, perhaps more applicable to initial development scenarios, would be to 
maintain an offline package of data manipulation utilities. 
 
 
Summary
 
A generic Record/Playback Simulator captures raw Sample data from the Instrument and stores 
these as sequential Sweep units in a disk file. These Sweeps can later be read from the file and their 
Samples injected into the processing stream of a physical or virtual Instrument. 
 
Scripts or other software routines can be built to exploit or enhance the capabilities of the Simulator 
for various test and measurement applications. 

                                                 
17 See discussions on file access, file compression, and performance in the Implementation section below. 
18 This requirement holds for a closely-coupled (probably stream-based rather than file-based) encoder and decoder. For 
a more loosely-coupled (possibly batch-oriented) scenario, there might be opportunities to work around any reasonable 
time performance penalty. 
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DESIGN OF THE RECORD/PLAYBACK SIMULATOR SOFTWARE 
 
A small set of software object classes partition the following Simulator functionality (Figure 6): 
 

• internal state sequencing and interface with the Instrument: SimControl 
• disk file management: SimData 
• hardware timing simulation: SimHW 

 
 

 
 
The SimHW software component was already in use supporting a previous project. After some 
modification, it now performs an expanded role supporting Simulator services for any “virtual 
Instrument” such as a desktop PC running appropriate software. 
 
The remaining two components (SimControl, SimData) were designed and implemented from the 
ground up and integrated with the host organization’s Instrument software platform (which includes 
the SimHW component). 
 
SimControl monitors all DUT sample data acquired by Instrument. When SimControl receives 
notification from the Instrument that a Sweep event has been triggered, then SimControl issues 
appropriate notification to SimData, depending on the state of Mode (Record, Playback, or Off). 
 
If in Record Mode, then SimControl forwards sample data from the Instrument to SimData, with 
notification to write this data to disk. If in Playback Mode, then SimControl signals Instrument to 
drop any physical DUT sample data it has buffered, and signals SimData to read sample data from 
the disk. SimControl then forwards the disk data back to Instrument. 
 
For simplicity, the basic design provides for asynchronous timing of these events: Instrument must 
wait for SimControl to complete its additional duties before proceeding with the normal Instrument 
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processing cycle. A revised or specialized implementation might attempt a synchronous approach, 
placing some different constraint on the internal performance of the Simulator while 
accommodating different performance requirements for the overall system. 
 
SimControl also is tasked with managing stream buffering, multiplexing, and any other data 
formatting or flow control requirements. (With the present implementation, both stream buffering 
and multiplexing are in play.) 
 
This implementation’s target Instrument employs chunked or bursty rendering of Samples in order 
to accommodate hardware timing constraints. During the record process, SimControl must buffer 
these stream partitions and deliver them to SimData in an orderly fashion. Conversely during 
playback, SimControl must receive a full complement of stream data as supplied from the disk file, 
and partition it in the manner expected by Instrument. This expectation should be clearly specified 
by control signals available from Instrument. 
 
An implementation might employ some multiplexing schemes that require decoding of the 
Instrument’s supplied Sample stream in order to isolate separate Sweeps during the record process, 
and encoding to rebuild the expected Sample stream for return to the Instrument during the 
Playback process. 
 
In principle, there might be no need for decoding and encoding. The stream of Samples might 
simply be recorded to the disk file and played back without reformatting. This would make for a 
simpler design, but doing so would make Sweep data less accessible for external editing or 
generation by algorithm. With decoding applied before the Record process, each Sweep can be 
stored in its conceptual form: a distinct sequence of Samples. In this context one can easily envision 
an array of Sample objects subject to manipulation. 
 
A description of this implementation’s stream buffering and encoding mechanisms is provided 
below in the Implementation section. 
 
 
Organization of Sweep objects by SimData 
 
The simplest data structure for storing a container of Sweep objects (Figure 5) would be an array of 
Sweeps, equivalent to a two-dimensional array of Samples. In practical terms, it can be useful to 
maintain some metadata related to each Sweep object. As mentioned above, for example, some 
information related to the Instrument State should be stored along with each Sweep. In our design, 
then, at minimum we envision a structure composed of “signal” (Sweep) plus “info” (Sweep 
metadata). We denote this object “SimSweep”. This “signal plus info” organizational paradigm 
should characterize all Simulator data objects, present and future. 
 
An array is the simplest organization for a SimSweep object container. For our implementation, 
there was no requirement for anything other than a simple sequence of SimSweep objects. 
 
Suppose, though, that an application could benefit from a different type of container data structure. 
It is straightforward to imagine a testing scenario involving SimSweep objects, wherein path 
choices could be made based on prior testing results. Such a scenario efficiently might be 
implemented with a tree or graph structure of contained SimSweep objects. 
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With this consideration in mind, a decision was made to formulate the SimData component as an 
abstract base class from which various SimSweep container classes can be derived, each 
representing a data structure type suited to a specific situation (Figure 7). In fact, the SimSweep 
class itself is derived from the abstract SimData base class (representing the simplest container of 
one Sweep). The next-simpler sequence container of SimSweep objects is realized as another 
SimData-derived class SimSweepSet. Any newly-conceived SimData class is potentially a container 
for any other SimData class. One might imagine, for example, a “SimQueue” container of 
SimSweep objects, or a “SimSpecialGraph” container of SimSweepSet objects. 
 
 

 
The following structural nomenclature can be a bit confusing, but the “info plus signal” paradigm is 
meant to apply to each SimData-derived class, including classes SimSweep and SimSweepSet. To 
clarify, note that each SimSweepSet contains some metadata (SweepSetInfo) and some signal 
(SweepSet, an array of SimSweep objects). From the point of view of SimSweepSet, each contained 
SimSweep object is an element of pure signal. From the point of view of SimSweep, each 
SimSweep object contains both metadata (SweepInfo) and pure signal (Sweep). 
 
This organizational strategy solidifies the relationship between any single Sweep and its own 
specific metadata. The “info” component of any higher-level SimData-derived object pertains only 
to its own level of organization. SweepSetInfo, for example, contains no information related to any 
single Sweep object, but only information related to the SimSweepSet container object. 
 
Any SimData container must have a mechanism for iterating among its contained SimData objects, 
whether for reading, writing, or any other purpose. In a purely object-oriented design, this would be 
accomplished through use of a separate or contained iterator class specialized for each SimData-
derived type. For our implementation, there was no immediate need to develop a separate iterator 
class for SimSweepSet, but there was a priority on achieving deliverables within a limited time 
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frame. Sequencing logic for the simple array structure (including special conditioning for seeking 
matching State and for looping endlessly, as described above under Requirements) was 
implemented in a straightforward manner.  
 
 
File access operations 
 
Each SimData-derived class must define methods (Figure 8) enabling each SimData object to write 
its own content to the specified disk file as a unit, and for reading its own content from the disk file 
as a unit. Each SimSweep object, for example, is fully capable of writing and reading its own 
Sweep and SweepInfo content together as a single disk file record representing the SimSweep 
object. 
 
Similarly, SimSweepSet is fully capable of writing its own content to the disk file specified by 
FileSpec, and of reading its own content from the same disk file. Since SimSweepSet is designed as 
a container of SimSweep objects, it may accomplish these tasks by invoking methods of SimSweep 
successively on each contained object. For example, upon receiving a NotifyWrite() signal from 
SimControl, a SimSweepSet object could perform housekeeping and invoke its own WriteData() 
method, which would in turn invoke the NotifyWrite() method of each contained SimSweep object 
(Figure 8). This scheme leverages code reuse in an object-oriented framework. 
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The basic design places few constraints on the file access and buffering strategy used by any 
specific implementation. At minimum, the file I/O scheme must support the following requirements 
(as portrayed above in the Introduction and Requirements sections): 
 

• ready switching among file targets 
• ready switching among Instrument states 
• negligible performance penalty on Instrument operation 

 
Included below (in the section on Implementation) is more detail on how our implementation moves 
SimData content to and from the file system. 
 
Our implementation uses a binary file format for SimData files in order to optimize performance 
and use of storage. SimData classes might also include methods and data members to enable writing 
and reading non-binary files, for example comma-separated or XML files that might be used for 
editing or signal generation. 
 
 
File compression
 
A stream-oriented, closely-coupled arrangement with excellent compression performance would be 
ideal. 
 
A file-oriented implementation could be less useful. If a performance penalty accrues as a result of 
loose coupling (or if very good compression performance is not achieved), then a real-time service 
might not be practicable. Employment of a file-oriented service in a live test-and-measurement 
scenario might require extra work to set up batches of files offline to be compressed after, or 
decompressed prior to, those files being addressed by the primary Record/Playback software.19 Also 
it’s messy to have various temporary files being written, read and (presumably) deleted. 
 
For this scenario a file-oriented, loosely-coupled design was fairly simple to develop and (given 
modest compression performance) introduced little additional performance constraint. 
 
Aesthetic and practical concerns suggest that the design of our file compressor should reflect 
aspects of the Record/Playback design. Given the centrality of the Sweep object, for example, one 
might think in terms of a corresponding “SweepCompressor” object capable of transforming the set 
of bits represented by a Sweep object into an encoded (hopefully smaller) bit set. We’ll see why 
being rigorous about that might pose problems, and we’ll consider a working compromise. 
 
 
What’s available? 
 
Given the ready availability of open-source compression utilities with proven performance and 
reliability, the thought of building a full-blown compression scheme from scratch was of limited 
entertainment value. Two of these utilities stood out from the pack: one (LZMA) uses a 

                                                 
19 With a fast, highly-effective, tightly-coupled, streaming scenario, the service should be transparent to the client. 
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combination of dictionary-based and statistical encoding20; the other (bzip2) prefixes a statistical 
encoder with a block-mode pre-compression stage21. 
 
Dictionary encoders (e.g., LZMA) typically process data in a sequential stream, classifying 
structural elements already encountered and exploiting these to compress newly-encountered data. 
Imagine using a spoken language dictionary that initially contains only a few words, but 
accumulates a new entry for each word you learn. At the outset, this dictionary’s usefulness will be 
limited, but as more material is encountered, it becomes more useful. Similarly, a dictionary 
encoder will in principle achieve better compression performance with increasing size of its input.22 
In practice, the dictionary generally can not be allowed to grow without bound, so compression gain 
tends to be limited for larger files. 
 
The Burrows-Wheeler Transform (the “b” in “bzip2”) is a sorting algorithm that (when followed in 
sequence by run-length and move-to-front encoding) is effective in preparing blocks of data for 
improved compression performance by a statistical encoder. It does so by permuting the content of 
a given block in a way that, on average, enhances local redundancy.23 The effectiveness of this 
process is a function of block length24, which requires a minimum input size and implies better 
performance with increasing input size. 
 
For both utilities, then, we should expect a strategy that encodes many small chunks of data 
individually, to provide inferior compression performance. We would prefer a strategy that encodes 
all the chunks together in one lump. From this perspective, the concept of a “SweepCompressor” 
object loses attractiveness. Perhaps we should think rather of a “FileCompressor” object. 
 
Table 1 shows a comparison of results obtained with LZMA and bzip2, using a selection of 
different file types and sizes. The compression factor25 is (original size) / (compressed size); larger 
numbers are better. We include a text file, and a Microsoft Word file containing mostly JPEG 
(already compressed) content, as context for our target Record/Playback files.  
 
 

  compression factor 
file type size, bytes lzma bzip2 
ANSI text 59,703 3.469 3.703 
Word file with images 668,160 1.120 1.096 
Record/Playback 19,508 1.246 1.162 
Record/Playback 97,008 1.257 1.198 
Record/Playback 1,250,130 1.253 1.215 

 
Table 1. Comparing two popular open-source compressors 

 

                                                 
20 Wikipedia:LZMA 
21 Wikipedia:Bzip2 
22 Salomon, p. 48 
23 This is an expression of Kolmogorov/algorithmic information content, as distinct from Shannon/entropic information 
content. Salomon, pp. 48-49 
24 Salomon, pp. 756-760 
25 We avoid use of its inverse: compression ratio, which invites confusion when expressed as a percentage. 
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Two points merit notice: LZMA does better with our Record/Playback files (at least those smaller 
than 2 MB or so), and neither utility does very well. In fact, neither does much better than the worst 
that should be expected – i.e., attempting to compress a file that was already compressed. 
 
 
What’s the problem? 
 
From Shannon information theory we have the quantity entropy, an index of the “surprise” 
information content of a data set. Entropy H is a measure of the “absence of” redundancy R 
contained in the set: 
 

H   =   Hmax  -  R 
 
where Hmax is the maximum entropy attainable by the symbol set, and R (a positive number 
representing a negative amount of redundancy) equates to a positive quantity of entropy. For a data 
set comprised of n distinct symbols with probability mass function p, Hmax is the entropy of a 
uniformly-distributed set of the same n symbols26: 
 
                                   H   =   ∑k=1→n pk log(1 / pk)   =   n p log(1 / p)  -  R 

 
                                                                          H   =   n (1/n) log n  -  R 
 
                                                                          H   =   log n  -  R 
  
Using base-2 logarithms, H is the expected value of the number of bits required to encode a single 
symbol. With a uniform distribution, every symbol would require the same number of bits to encode 
– that’s maximum entropy: a condition we recognize intuitively as perfect “randomness” or 
“disorder”. The greater R, the more variation exists in the number of bits needed to encode various 
symbols - and the more compressible is the data set, in principle.27

 
For the largest Record/Playback file in Table 1, the distribution of byte symbols and the calculated 
entropy are shown below, in Figure 8a. For this data set, 
 

H      =   7.37 bits per symbol (bps) 
 
Hmax  =   8 bits (one byte) per symbol 

 
This file’s byte redundancy, or “lack of surprise” is manifested in the several byte values that are 
represented with larger frequency. 
 
Assuming that both encoders process one-byte symbols, what can be learned by comparing this 
file’s H with its Hmax ? If a given file containing redundancy could undergo a process that removed 
all redundancy, this would be equivalent to achieving “perfect” compression. Since Hmax 
characterizes a file of bytes with no redundancy, and H characterizes our file with its redundancy, it 
seems reasonable that, for this file, the ratio (Hmax / H) should have a magnitude comparable to the  

                                                 
26 Haykin, pp. 568-573, and Salomon, pp. 46-47 
27 Another way to view this is to consider that R relates to Hmax, similarly as the standard deviation of a distribution 
relates to its mean value.  
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greatest compression factor achievable. For this file, 
 

Hmax / H  =  1.085 
 

 
 

Fig. 8a: Distribution of byte values in one Record/Playback file 
 
 
By the above thumbnail estimate, we should expect only modest compression performance (a 
compression factor less than 1.1) from statistical encoding of this file. We do see modest 
compression performance in Table 1 for the Record/Playback files, including the file (bottom row) 
we’ve been discussing. Still, the compression performances of both LZMA and bzip2 have 
exceeded our estimate. What’s going on? 
 
 
Algorithmic entropy 
 
Consider the following three sequences of integers: 
 
(a)  3 2 5 1 2 5 4 3 4 5 2 1 3 4 1 
 

(b)  1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 
 

(c)  1 1 1 4 4 4 5 5 5 2 2 2 3 3 3  
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All three sequences contain the same distribution of integers, so their H and Hmax values are all 
equal. If we estimate compressibility based only on statistical distribution, our estimate would be 
the same for each sequence. 
 
Sequence (b), though, might be encoded as the following sequence of characters: 
  
# 1 2 3 4 5 # 3 
 

Where “#” is meant to enclose a string, and the integer following gives the number of repetitions of 
that string in sequence. The resulting compression factor is 1.875. 
 
Sequence (c) might be encoded as: 
 
1 3 , 4 , 5 , 2 , 3 

 
Where the first trailing integer 3 represents number of repetitions, and “,” (in the absence of a new 
trailing integer) means “apply the same number of repetitions”. The resulting compression factor is 
1.5. 
 
Thus for two of our sequences, it is possible to construct a rule or algorithm for encoding the 
sequence that results in substantial compression, independent of statistical distribution. The length 
of the shortest such algorithm is the algorithmic entropy of the sequence28. 
 
So, while statistical compression reduces information redundancy within a sequence (or 
decorrelates the sequence elements) by exploiting its Shannon entropy29, another type of 
compression might attempt to decorrelate the same sequence by applying some efficient algorithm 
for finding a shorter representation for the sequence. Dictionary-based compression (LZMA) does 
this; so does Burrows-Wheeler transformation followed by move-to-front encoding (bzip2)30. 
 
Now we see why, although calculating the Shannon entropy of our sample file gave a “ballpark” 
estimate of compression performance, the utilities actually performed somewhat better. 
 
Preferring LZMA as the basis for a custom compression utility, I (Bozarth) sought to characterize a 
Record/Playback file with respect to its “dictionary-friendliness”. Let us define a dictionary entry as 
a unique sequence of bytes, and imagine a simplified version of a dictionary-based encoding 
scheme, which dutifully stores every entry and checks every newly-encountered byte sequence 
against the dictionary. In this scenario, relatively good compression performance could be obtained 
from a dictionary stocked with a high proportion of very long entries. This is true because in 
scanning the input stream, the encoder would very often encounter a long sequence that had already 
been stored in the dictionary - thus the encoded stream would increase in length by only the 
information required to reference the stored entry (rather than having to repeat the entire sequence 
in the encoded stream). 

                                                 
28 Devine, p. 85 and Salomon, pp. 48-49. 
29 Specifically, statistical compression assigns variable-length codes to symbols based on a distribution. Shorter codes 
are assigned to those symbols with greater occurrence in the distribution, thereby reducing the average length of each 
encoded symbol. 
30 Both compression utilities combine statistical and algorithmic approaches in attempt to achieve a balance of 
compression performance with time performance, memory utilization, and other factors. 
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Also, were the input stream to contain many repeated occurrences of already-stored entries, this 
would enhance compression performance31. I collected the native sequence of bytes from the 1.25 
MB test file into a simplified dictionary, as described above. I plotted the number of dictionary 
entries against two variables: length of entry, and number of times the entry was referenced from 
the input stream. The result is shown in Figure 8b. 
 

 
 

Fig. 8b: Record/Playback file is not especially “dictionary-friendly”. 
 
For optimal compressibility with our prototypical dictionary method, we would like to see a large 
number of tall data points clustered in the opposite (far) corner – rather than being clustered near the 
origin and along both axes. As it turns out, though, longer entries are referenced very few times, and 
those entries that are referenced frequently are very short. 
 
This observation is consistent with Table 1, which indicates that algorithmic compression has 
helped some, but not much, beyond what is theoretically attainable through entropic compression 
alone (compression factor = 1.085). 
 
 
Custom pre-compression 
 
Contents of the test files from Table 1 represent the prominent data features of files expected from 
the rollout version of the Record/Playback Simulator. I examined the content of the largest test file, 
looking for redundancy that might be exploitable by a pre-compression front-end stage that would 
feed the LZMA utility. Because LZMA is quite good at recognizing local redundancy32 (as distinct 
from the simplified, aggregate dictionary scheme described above), grouping redundant byte values 
closer together in a systematic manner could improve the compression performance of the LZMA 
                                                 
31 40 entries of length 40, referenced 40 times each; would yield better compression than the same entries referenced 
only 20 times each – because the additional input would have to go into forming new entries, a less efficient process. 
32 Salomon, pp. 169-171, 224-225.  
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encoder. Any such pre-compression process must also be reversible (as dictated by the lossless 
requirement). 
 
Using the set of data tools described below, I identified five data components of the file that have 
distinct character with respect to redundant byte values: 
 

• sweep headers (text and integer metadata specific to each Sweep object) 
• some integer values contained in each Sample 
• one byte from each single precision floating-point number contained in each Sample 
• the other three floating-point bytes 
• the file header (a few dozen bytes long) 

 
I segregated and arranged each data component as a two-dimensional array of bytes. For each of the 
first three components listed above, I identified a short sequence of row or column transformations 
that would enhance local redundancy in the output stream. 
 
For the fourth component, I did not find a way to enhance local redundancy – no pattern was 
evident. In fact, testing revealed that LZMA yielded “negative compression” (encoded file larger 
than the original) for this component. (Accordingly, the LZMA encoding and decoding steps below 
are not applied to this component.) For the relatively short file header, there is no need for pre-
compression, but it is sent through the LZMA encoder. 
 
 
SimZip:  compression and decompression utility for Record/Playback files 
 
Working with these five data components and three reversible custom array transformations, I built 
an encoder with the following behavior: 
 

• Extract each data component from the source file. 
• Apply a corresponding transformation to each component, where applicable. 
• Compress each (transformed) component individually, using LZMA. 
• Prepend a byte count to each compressed segment. 
• Concatenate the segments, and prepend an uncompressed header for the compressed file. 

 
The decoder works in the inverse manner one would expect: 
 

• Read the uncompressed header and note any relevant information about the segments. 
• Decatenate the segments (using the byte counts), and decompress them with LZMA. 
• Apply each corresponding inverse transformation, where applicable. 
• Load the destination data file with the recovered data components. 

 
As mentioned earlier, the design of the encoder/decoder should reflect that of the Record/Playback 
system. The primary data objects of the Record/Playback system are Sample, Sweep, and SweepSet. 
In the rollout version, each Record/Playback file object is simply a SweepSet with some additional 
metadata (a file header). The SimSweepSet object is a linear array of Sweeps. Each Sweep is a 
linear array of Samples, plus metadata (a sweep header). Each Sample is a data structure composed 
of floating-point numbers and integers. 
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Thus the entire file object can be viewed as a file header, a linear array of sweep headers, and a two-
dimensional array of Samples. In Figure 8c, the respective pre-compression data components (file 
header, sweep headers, integers, floating-point byte 3, and floating-point bytes 0-2) are color-coded. 
 

 

 
 

All this nice symmetry can be compromised by the presence of odd-sized data in any component. A 
sweep, for example, may contain an arbitrary number of Samples. Sweep headers, moreover, may 
contain variable-length text strings. Perhaps a more realistic scenario would be represented in 
Figure 8d: 
 
 

 
 
Correct handling of such non-rectangular (“jagged”) array components is built into the SimZip 
encoder/decoder, and is accomplished by means of additional information kept in the pre-
compression header, together with alternative versions of the various transform modules. More 
information is provided in the Implementation section. 
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The SimZip class is derived from a base class SimFile, which is similar (pun intended) to a 
SimData-derived class in the Record/Playback software. SimFile and SimZip, though, are C# .NET 
classes built separately from the Record/Playback Simulator (a project written in unmanaged C++ 
code), during a secondary development cycle. SimFile has a limited role: it can read a specified 
SimSweepSet file from disk, and it can write data from memory to a specified file in SimSweepSet 
format. 
 
In this context, it is worth revisiting our previous discussion about not mirroring the exact 
SimData object relationships among Sweeps. The careful attention to abstract derivation of the 
SimData class family (also discussed elsewhere in this paper) is not reiterated in SimFile. The 
benefits of run-time polymorphism and generation of arbitrary new classes that were designed into 
SimData, are not available with SimFile. A tradeoff was less effort invested in class design. 
 
SimFile contains a member class SimSweep. Like SimData-derived classes, it also contains a set of 
SimSweep objects. 
 
Unlike SimData, SimFile and its member SimSweep rely fundamentally on stream processing 
facilities, but (like SimData) not on high-level serialization facilities. Any method that addresses a 
file first opens a stream connected to that file, then invokes a SimFile stream processing method. 
Reading and writing of data fields is done through primitive stream methods. 
 
Being derived from SimFile, SimZip can read and write. SimZip methods also conduct all the 
business of compressing and decompressing. 
 
Both SimFile and SimZip rely on an auxiliary namespace Utility, which contains helper classes 
Pair, Io, StreamProcessor, FileProcessor, ArrayQuery, ByteArrayManipulator, and 
ByteArrayConverter33. Classes in the Utility namespace are restricted to providing generic, low-
level functionality not tied to any specific application, and are therefore likely to be re-used in other 
applications at some later time.  
 
 
What kind of compression performance is likely? 
 
As mentioned above, the triple-byte signal component (dark blue in Fig. 8c) was found to be not 
compressible using LZMA. This component occupies 62.2 % of the byte footprint of our 1.25 MB 
test file. If all other file components could be compressed to zero bytes each, we would have a 
theoretical maximum compression factor of  
 

1  /  0.622  =  1.61 
 
This is a common-sense calculation, but is also an expression of Amdahl’s Law which bounds the 
performance improvement to a system with a non-improving component: 
 

s   ≤   1  /  f 
 

                                                 
33 This class represents wasted effort resulting from my use of the project as an opportunity to develop my first 
substantial C# application. The .NET Framework has a BitConverter class that fulfills the purpose. 
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where s is the overall performance multiplier, and f is the proportion of the system’s performance 
determined by the non-performing component34. 
 
Clearly the theoretical maximum is unattainable for this system. By consulting Table 1 and 
assuming that pre-compression will yield some improvement, we might estimate 1.3 to 1.5 as the 
range of enhanced compression factor for this file. 
 
 
Data tools 
 
These are not so much a designed subsystem as a related set of utility classes. I developed them in a 
rather ad hoc manner, mostly to support my investigations into potential file compression schemes. 
Here we glance at their organization and note the activities for which they have been useful. 
 
Earlier I mentioned the Utility namespace. These are low-level classes used by the other tool 
classes. Not really a unifying theme for these, except that they are collections of static methods that 
are usable by a variety of applications and have no dependencies on custom entities outside the 
Utility namespace. 
 
The Utility.StreamProcessor class contains a delegate (function object) named Transform. This is 
the prototype for all the “transform”-styled static methods that provide pre-compression (and 
inverse pre-compression) for file data components. Some of these methods remain in 
StreamProcessor, having no dependency on a SimFile object. Others are static methods of the 
SimZip class. 
 
There is a class named DataTools (also derived from SimFile), but it’s really just a collection of 
methods that I used for testing ideas. These all began life as instance methods of SimFile, prior to 
that class being pared down to essentials. Included are methods that support some very specific 
SimFile retrieval, storage, and format conversion processes. The instance method GetSignal, for 
example, returns a byte array containing a precisely specified subset of the object’s signal data. 
 
Static methods ReadSignal and WriteSignal enable format conversions while moving data between 
stream and byte array representations. One special data format that was very useful in visualizing 
binary data during my investigative work, is called CsvByte: a comma-separated sequence of zero-
padded, 3-digit integers, each representing the value of one byte. 
 
The Model class supports some very basic statistical analysis on general data files. I used it to 
characterize Record/Playback data files. 
 
There is also a collection of Matlab functions. These were quite helpful in the earlier stages of 
analyzing test files. Several of these were eventually translated directly into C# code used in the 
SimZip solution. One example is PickPeriodicValues, a static method of the ByteArrayManipulator 
class in the Utility namespace. This method (which more accurately might be named “selectively 
segregate values with periodic indices”) returns a specified subset of bytes from a two-dimensional 
byte array. Another example is a set of pre-compression transform functions used by SimZip. 

                                                 
34 Parhami, pp. 65-66 and Wikipedia:Amdahl. 

 26



Summary 
 
The basic design of the Record/Playback Simulator partitions control, timing, and data management 
among a system of object classes. The SimControl component interfaces with the Instrument 
component, extracting or injecting streaming Sample data. The SimData component interfaces with 
the file system. The structure of SimData blends inheritance with composition, supporting reliable 
storage and retrieval of potentially complex Sweep structures. Ideally, SimControl would 
agnostically, polymorphically reference an appropriate SimData class object. 
 
The Simulator design seeks to incorporate elements of adaptability and scalability. Coupled with an 
incremental implementation, the development process took a pragmatic turn toward rapid 
fulfillment of the host organization’s specific requirements. 
 
The SimZip file encoder/decoder utility reflects some design features of the SimData class family, 
while addressing requirements specific to file compression. Other tools for data analysis were 
developed as needed, and organized in C# class files. All the source code for these is available for 
download: 
 

http://www.dbozarth.com/Project_MS/compress/SimFile/index.htm
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IMPLEMENTATION NOTES 
 
Previous sections outlined the basic requirements and design features that are generally applicable 
to Record/Playback Simulator implementations across various families of instrument types and 
among various test and measurement application areas. This section provides some detail of one 
such implementation, and describes some development and verification activities that translated 
design principles into a functioning engineering application. This work was conducted in an 
industrial laboratory facility during late June through mid-September of 2008. We will also look at 
a file compression implementation that resulted from work conducted off-site in early 2009. 
 
 
Software technologies 
 
By design the Record/Playback Simulator software assembly is loosely but directly coupled to the 
Instrument software application - the operational software environment local to one specific 
Instrument. For our implementation, the programming technologies used were identically those 
used in other development work for the target Instrument software application. 
 
We built the Record/Playback Simulator software in a Microsoft Windows environment using 
unmanaged C++ code using Standard Template Library (STL). We used Component Object Model 
(COM) technology for controlling the Instrument via a programming interface (rather than front-
panel controls). The development platform was Microsoft Visual Studio 2005 enhanced by Whole 
Tomato’s Visual Assist X productivity tool, and supported by an IBM Rational ClearCase source 
code management system. We also took advantage of the group’s TWiki collaboration tool. 
 
 
Sample stream decoding and encoding 
 
The SimControl object (Figure 8) contains its own set of state variables (SimState) which includes 
Mode as discussed above. SimControl also monitors Instrument State and the stream of Samples 
(StreamBuffer) from the DUT. Let us assume the StreamBuffer contains a sequence of 
undifferentiated Samples (Figure 9), and assume that the Simulator Mode is set to “Record”.  
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There are two components of our Instrument State that pertain to data encoding and decoding. For 
this report we will call one of these components “SweepTag”. Its purpose is to identify Samples 
from a stream that belong together in the same Sweep. Another Instrument State component we 
need is an integer value representing the length of a sequence of Samples having the same 
SweepTag. We call this integer “SegmentSize”. We use the term “SegmentInfo” to denote a single 
pair <SweepTag, SegmentSize> (Figure 9). 
 
Recall that a single Instrument sweep event may generate multiple Sweep objects. At the time the 
Instrument initiates any new sweep event, SimControl reads an array of SegmentInfo records from 
the Instrument. These will inform SimControl as it processes Sample stream data from the 
StreamBuffer. 
 
The ManageRecStream() method of the SimControl object (Figure 8, Figure 9) loads the 
StreamBuffer with Samples from the Instrument as they become available. When a “ready” signal is 
asserted by Instrument, then ManageRecStream() decodes the content of StreamBuffer (with 
guidance from the SegmentInfo array) and appends successive Samples to their correct Sweep 
positions in the receiving SweepBuffer. Subsequently the content of SweepBuffer will be forwarded 
to SimData with a NotifyWrite() signal. 
 
The software tooling is consistent for both Record and Playback modes, so the converse behavior 
occurs during Playback. When a “ready” signal is asserted, the ManagePlyStream() method of 
SimControl generally invokes the NotifyRead() method of SimData, which loads Sweep data from 
disk into the SweepBuffer35 (Figure 8, Figure 9). Then ManagePlyStream() addresses the 
SweepBuffer and multiplexes Samples into the StreamBuffer (with guidance from the SegmentInfo 
array). The StreamBuffer content is then forwarded to Instrument for processing. 
 
 

                                                 
35 If for some reason a suitable set of Sweeps is not obtained from disk, a “canned” Sweep will be generated from a 
preconfiguration. 
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Stream buffering 
 
Our Instrument employs potentially bursty Sample streaming - in Record Mode, the StreamBuffer 
receives Samples from Instrument in variable-length chunks which collectively partition the 
Samples belonging to a single hardware sweep event. SimControl must decode the Samples in its 
StreamBuffer as they become available and collect these in the SweepBuffer. 
 
In Playback Mode, Instrument (being agnostic to the Simulator) expects to manage Sample bursts as 
hardware timing conditions of the moment dictate. SimControl must the supply exactly the 
expected-size burst of Samples to Instrument on each occasion, while keeping track of SweepBuffer 
indexing. Again, these bursts partition the overall sweep event in progress. 
 
The instantaneous size information needed to process the bursts is contained in Instrument State. 
The size information is supplied (as indices) to SimControl with the invocation of method 
ManageRecStream() (when in Record Mode) or method ManagePlyStream() (when in Playback 
Mode). 
 
During the Record process, ManageRecStream() implements stream buffering and demultiplexing 
simultaneously, signaling NotifyWrite() when a full complement of Samples has been collected in 
the SweepBuffer. This process is sketched in algorithmic form below. 
 
 
ALGORITHM ManageRecStream (startPos, finitPos, StreamBuffer[]) 
------------------------------------------------------------------------------ 
Method of class SimControl. 
------------------------------------------------------------------------------ 
startPos, finitPos: 
   indices of sliding position of StreamBuffer[] within the overall sweep event. 
StreamBuffer[]: a multiplexed sequence of Samples supplied by the Instrument. 
StreamBuffer[]: will have size (finitPos - startPos + 1). 
------------------------------------------------------------------------------ 
Each position of SegInfoArray[] describes a single Sweep segment. It contains: 
 - sweepTag Identifies a single row of SweepBuffer[][] (a distinct Sweep). 
 - segSize Number of buckets required to fill the segment. 
------------------------------------------------------------------------------ 
eventSize  Number of Samples comprising the overall sweep event. 
segCount[]  Number of "filled" Samples per segment. 
------------------------------------------------------------------------------ 
Using SegInfoArray[]: 
   Demultiplex SampleArray[], append Samples to SweepBuffer[][]. 
When the overall sweep event is complete, send NotifyWrite() signal to SimData.  
------------------------------------------------------------------------------ 
BEGIN 
   IF startPos = 0 THEN Clear segCount[], SweepBuffer[][]. 
   infoNdx ← (index of the first segment with an unfilled segment count) 
    
   FOR EACH Sample in StreamBuffer[] DO 
    mySweepTag ← SegInfoArray[infoNdx].sweepTag 
    Locate target row[] in SweepBuffer[][], by matching mySweepTag. 
    
    IF (target not found) THEN 
     Add a new empty row[] to SweepBuffer[][]. 
     Make this the target row[]. 
    END 
    
    Append Sample to the the target row[] in SweepBuffer[][]. 
    segCount[infoNdx] += 1. 
    
    IF (segCount[infoNdx] = segSize) THEN infoNdx += 1. 
   NEXT 
    
   IF (eventSize <= finitPos) THEN 
    Signal NotifyWrite() to SimData object. 
    Clear SweepBuffer[][]. 
   END 
DONE 
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One detail glossed over here is the modeling of SweepBuffer as an array of Sweep objects. In 
practical terms, each position of SweepBuffer would be occupied by a Sweep (sequence of 
Samples) plus some metadata, a structure similar but not identical to the SimSweep object. For this 
report, it is not necessary to flesh out this distinction, but note that a SweepTag field would be the 
minimum required metadata for each Sweep in the SweepBuffer. 
 
During the Playback process, ManagePlyStream() ensures the SweepBuffer gets loaded with 
Samples7 at the beginning of an Instrument sweep event, then implements stream buffering and 
multiplexing simultaneously. This process is sketched in algorithmic form below. 
 
The querying of SimState shown below exhibits the reliance of this implementation on state 
sequencing managed by SimControl (rather than by a separate iterator class associated with 
SimData). The details are not shown, but SimState would include some flags and/or indices to 
accomplish this sequencing. 
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ALGORITHM ManagePlyStream (startPos, finitPos, StreamBuffer[]) 
------------------------------------------------------------------------------ 
Method of class SimControl. 
------------------------------------------------------------------------------ 
startPos, finitPos: 
   indices of sliding position of StreamBuffer[] within the overall sweep event. 
StreamBuffer[]: a multiplexed sequence of Samples built by this routine. 
StreamBuffer[]: will have size (finitPos - startPos + 1). 
------------------------------------------------------------------------------ 
Each position of SegInfoArray[] describes a single Sweep segment. It contains: 
 - sweepTag Identifies a single row of SweepBuffer[][] (a distinct Sweep). 
 - segSize Number of buckets required to fill the segment.  
------------------------------------------------------------------------------ 
infoSize Number of positions in SegInfoArray[] 
eventSize Number of Samples comprising the overall sweep event. 
sweepNdx Current row (Sweep) index of SweepBuffer[][] 
SampleNdx[]    Current column (Sample) index for each SweepBuffer[][] row[] 
TmpBuffer[]    Temporary buffer for Samples. 
------------------------------------------------------------------------------ 
If startPos is 0, then load SweepBuffer[][] with Sweep record(s). 
Locate buffered Sweep record(s) according to startPos, finitPos, and State. 
Using SegInfoArray[], multiplex Samples onto StreamBuffer[]. 
------------------------------------------------------------------------------ 
BEGIN 
   IF (startPos = 0) THEN 
    Clear TmpBuffer[]. 
    
    IF (SimState shows need to initialize buffers) THEN  
     Clear SweepBuffer[][], sweepNdx, SampleNdx[]. 
    
     readFlag ← (Does SimState indicate a need to read from disk?) 
      
     IF (readFlag) THEN 
      Send NotifyRead() signal to SimData. 
     END 
    
     IF ( NOT(readFlag) OR (NotifyRead() did not succeed) ) THEN 
      Load SweepBuffer[][] with "canned" Samples by invoking special configuration. 
     END 
    END 
    
    Zero all SampleNdx[]. 
    
    FOR EACH infoNdx up to infoSize DO 
     mySweepTag ← SegInfoArray[infoNdx].sweepTag 
    
     Start with sweepNdx, find j: 
        j ← ( index of next unused SweepBuffer[][] row[] having (sweepTag = mySweepTag) ) 
      
     IF (matching sweepTag was found) THEN (mySweep[] ← SweepBuffer[j])    
     SampleNdx[j] ← 0 
     Clear TmpBuffer. 
    
     IF NOT(matching sweepTag was found) THEN 
      Load SweepBuffer[][] with "canned" Samples by invoking special configuration. 
     END 
    
     limit ← SegInfoArray[infoNdx].segSize 
    
     FOR EACH count up to limit DO 
      mySample ← mySweep[SampleNdx[j]] 
      Append mySample to TmpBuffer[] 
      SampleNdx[j] += 1 
     NEXT 
    NEXT 
   END 
    
   FOR i = startPos to finitPos DO 
    IF TmpBuffer.size < i THEN 
     Append new empty Sample to StreamBuffer[] 
    ELSE 
     Append TmpBuffer[i] to StreamBuffer[] 
    END 
   NEXT 
    
   IF eventSize <= finitPos THEN 
    sweepNdx ← j 
    Clear SampleNdx[] 
    Clear SegInfoArray[] 
    Clear TmpBuffer[] 
   END 
DONE 
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File, data structure, and container issues 
 
The binary file format for SimData-built files conserves both storage space and file system access 
time, but the division of labor between SimSweep and SimSweepSet entails some inefficiency. 
(This also could apply to higher-order SimData container classes.) Since each individual SimData-
derived object comes with its own “info” component, there could be repetitive data stored or 
retrieved during each file system access operation. 
 
We mitigate this type of inefficiency by including some flags for each SimData class that tell the 
data engine whether or not to write certain “info” components to the disk file. 
 
One such write-flagged “info” component was conceived as a vector of integers “LocationIndex”, 
which is declared as a protected member of the abstract base class SimData. (As such, it is by 
definition a member of every SimData-derived object.) This member is perhaps unique in our 
implementation by seeming to have no practical utility. It actually is dedicated for the benefit of any 
higher-order SimData container that may be developed in the future. 
 
The purpose of LocationIndex is to uniquely identify each elemental data unit belonging to a 
SimData container. Each SimSweep object in a SimSweepSet container, for example, has its 
LocationIndex equal to the object’s corresponding index of SweepSet (the “signal” array 
component of SimSweepSet) (Figure 8). The SimSweepSet container itself has an empty 
LocationIndex. 
 
The operative conjecture is that a vector of integers, suitably encoded, should be capable of 
uniquely identifying any specific elemental component of an arbitrary data structure. The 
LocationIndex would identify, for example, each node of a higher-order SimData container such as 
a graph, tree, or other. The highest-order SimData container in such a schema should have an empty 
LocationIndex – since it would not be itself a member of any SimData container. 
 
Why maintain a LocationIndex for the elements of a SimData container?  An iterator object would 
need to map the internal container structure. Similarly insert, modify, and delete operations would 
need to know where each element should fit within the container’s data structure. For example, 
there could be some application that builds new SimData elements and writes them in some specific 
manner to a SimData container. Or, some application might read SimData elements from a 
container, process these in some manner, and write them back a SimData container in a manner 
dependent upon their original container location. In this case, the location information for each data 
element would need to be read from disk.  
 
Other “flagged” data members in our implementation are the primary and alternate file specifiers. 
The alternate specifier is intended for use in converting a SimData container file from its native 
binary format to an alternate format such as comma-delimited text, or XML. A Boolean flag 
member of each SimData object is used to indicate whether the primary or alternate format is 
currently being addressed. Other flags indicate whether the primary and alternate file specifiers 
should be written to disk. SimSweep objects in our implementation should normally have no need 
to write or read any file specifier, since the container knows the correct file name, and efficiently 
can provide its contained objects with any needed data. This is an example of using a Boolean flag 
to offset inefficiency by conditioning file system writes. 
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File compression
 
In the Design section we overviewed the behavior of Compress and Decompress instance methods 
of SimZip. Specifically, we mentioned that each file component is assigned a unique pre-
compression data transformation that enhances local redundancy, and that a complementary unique 
transformation is applied during post-decompression to restore the original structure of the 
component. 
 
Here we’ll look at SimZip’s way of managing jagged array data. This scheme involves two 
metadata headers that get prepended to the compressed file by Compress, and that get read from the 
compressed file by Decompress.36

 
When the Compress method is invoked, the SimZip object inspects its own data to determine 
whether any non-rectangular (jagged) array content exists. There are two distinct ways that a 
SimZip object can have jagged content. One is in the sweep headers; the other is in the signal data. 
During pre-compression and post-decompression operations of SimZip, the sweep headers are 
represented in an homogeneous array. Similarly, the several components of signal data are 
represented in homogeneous arrays. If any such array contains a row that differs in length from 
another row in the same array, then a jagged array condition exists. Such conditions cause problems 
for pre-compression and post-decompression. One reason for this is that array transpose operations 
are used to compress and decompress some file components. Special processing is used when 
jagged array conditions are detected. 
 
The sweep headers consist partially of variable-length strings. Some of these fields are optional for 
Record/Playback operation, and may be empty strings. Other fields may be non-empty but identical 
across all sweeps, for a given Record/Playback file. If corresponding fields have variable length and 
that variation is cancelled out in the aggregate by other length variations, then compression 
performance may suffer, but no jagged array detection and special processing will occur.  
 
The structure and size of each Sample element is invariant, but any Sweep may contain any number 
of Samples. An array of Sweeps, then, will be non-rectangular if any contained Sweep has a 
different number of Samples than another contained Sweep. 
 
If a jagged array of sweep headers is detected, this condition is flagged by Compress. Similarly, if a 
jagged signal data array is detected, this condition is flagged. Next, the flag value for each condition 
is written to the new disk file as part of its initial, uncompressed VersionHeader. Then, if the flag 
for jagged signal data is true, a special array of integers is written to a secondary, compressed 
DataSizeHeader. This array gives, for each Sweep, the difference in number-of-samples between 
that Sweep and the smallest number-of-samples over all Sweeps37. 
 

                                                 
36 Elsewhere in this paper we reference a “file header”. This is part of the structure of the standard Record/Playback file. 
The headers discussed in this section relate to file compression. To avoid confusion, I will not refer to these as “file 
headers”. 
37 In Figure 8d, the second row of the SweepSet contains the apparent minimum number of Samples. This number 
would be the common row size of a rectangular sub-component of this SweepSet. All other rows would contain excess 
Samples. 
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If the flag for jagged sweep headers is true, then the pre-compression transformation for sweep 
headers consists of a byte-for-byte copy (no transformation). Otherwise, a special transformation is 
performed that involves an array transposition. 
 
If the flag for jagged signal data is true, then during pre-compression each signal data component 
gets separated into two sub-components: a rectangular sub-component, and a “leftover” sub-
component. The rectangular subcomponent is formed using the minimum number of Samples across 
all Sweeps. The rectangular subcomponent gets transformed in the standard manner unique to that 
component. The “leftover” subcomponent, consisting of all samples in excess of the minimum 
number, forms a linear array. The DataSizeHeader partitions this linear array, keeping track of the 
number of samples that belong to each Sweep. The “leftover” subcomponent gets appended to the 
end of the byte stream produced from the rectangular transformation. 
 
During post-decompression, the correct set of inverse transformations gets invoked depending on 
the state of the two flags in VersionHeader, and the content of DataSizeHeader. 
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RESULTS 
 
Functional verification of the Record/Playback Simulator is conceptually simple. One only needs to 
verify that the Sample stream obtained from disk in Playback Mode is identical with the 
corresponding Sample stream originally rendered by the Instrument in Record Mode. One should 
also verify that this identity remains consistent over a range of measurement scenarios and expected 
operational conditions. 
 
We ran many unit tests during development to determine this identity between Playback and Record 
Sample values. With our Instrument, though, the detected Sample values are normally processed by 
the Instrument using a mathematical algorithm, and the resulting signal is made available to the 
User. (In other words, the quantity of real-world interest is the processed signal, not the Samples38.) 
 
An approach to systematic testing that was both simple and meaningful, then, was to place the 
Simulator in Record Mode and run some arbitrary scripted procedure to exercise the Instrument, 
while obtaining also a text or graphical representation of the output signal associated with the 
resulting set of Samples. Then, we place the Simulator in Playback Mode and run the same 
procedure, again obtaining a separate text or graphical signal representation. If some difference can 
be detected between the two similar representations, then an error has occurred in the process. 
 
Below is an image of the beginning and of the end of a pair of lengthy text files that were obtained 
with one of our Instrument’s standard output options. The window on the left displays signal 
information derived from one run of a certain test procedure with the Simulator in Record Mode. 
The window on the right shows the signal derived from a second run, moments later, of the same 
procedure with the Simulator also in Record Mode. Each pair of numbers was derived from a single 
Sample. Note that the two runs produce similar, but not identical results. For this particular 
Instrument, differences of this magnitude can be accounted for by random measurement noise. 
 

 
 

 

 
 
 

Effect of noise on derived signal. 
 

Figure 10 
 
 
 

 Missing file data was visually inspected. 

                                                 
38 Yet the utility and power of the Record/Playback Simulator method relies on working directly with the fundamental 
Samples, rather than working with the processed signal. 
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Below is a similar comparison of text files. On the left is a signal obtained with the Simulator in 
Record Mode. On the right is the signal derived from Playback of the recorded Samples. Note that 
the two runs produce identical results. This indicates that the Instrument application software has 
processed exactly the same Samples during two runs of the same procedure. There is no noise and 
no systematic error in the second run of the procedure, relative to the first run. 
 
 

 

 
 

 
 
 

Signal derived from Record and 
from Playback. 

 
Figure 11 

 
 
 

 Missing file data was visually inspected. 

 
 
Another perspective from our testing is shown below (Figure 12). We see in the top image the 
graphical representation of a DUT-derived signal processed through our Instrument. Superimposed 
on this is a second, separate signal obtained moments later, but under the same conditions. The first 
signal is rendered in a dark blue color, and the “prickly” aspect visible in the image results from bits 
of dark blue color “peeking out from behind” the second signal which is rendered in light blue. As 
in the previous scenario, the small differences represent random noise. 
 
The bottom image is constructed similarly using dark blue for a DUT-derived signal that was 
processed through the Instrument and also recorded to a disk file by the Simulator. The 
corresponding Playback signal is superimposed using a light-blue trace. Note that in the bottom 
image, the dark blue trace is nowhere visible. The superimposition appears to be perfect, indicating 
that the two signals are essentially the same. 
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Two separate signals superimposed (top); Record & Playback signals superimposed (bottom) 

 

Figure 12 
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One may need to closely examine and compare the previous two images (Figure 12) in order to 
recognize the difference between them. Another way to become convinced is to redefine the second, 
light-blue trace in each image as the arithmetic difference between the two signals. 
 

 
 

 
 

Signal and difference signal (top); difference of Playback relative to Record signal (bottom) 
 

Figure 13 
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The above pair of images (Figure 13) display the same events as the previous pair (Figure 12). The 
only difference is that the light-blue trace in the second pair shows a difference signal. In the top 
image (Figure 13), we see that the two separately-obtained DUT signals diverge increasingly from 
left to right. In the bottom image (Figure 13), we see a flat line at the zero level, indicating no 
difference between the Playback signal and its corresponding Record signal. 
 
Below is a similar comparison using a polar representation of a complex-valued signal. Each image 
in the top row superimposes two signals differing is only by noise. On the right the difference signal 
has a small finite magnitude. Each image in the bottom row superimposes a Playback signal with its 
corresponding Record signal. On the right, the difference is not visible – if it were visible, it would 
occupy only a single pixel at the center of the display. 

 

  

 
 

Two separate signals superimposed (top); Record & Playback signals superimposed (bottom). 
In each case, on the right is shown a difference signal in light blue color. 

 

Figure 14 
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In testing the performance of our implementation of the Record/Playback Simulator, we used a 
variety of recorded file sizes and scripted procedures to emulate various combinations of the 
fundamental use cases outlined in the Requirements section above. Once the mechanism for 
recording and playing back Sweeps was determined to work correctly for these scenarios, the basic 
development work was deemed complete for this implementation. 
 
This is the only implementation of the Record/Playback Simulator within the scope of this project. 
Due to project resource constraints, some desirable objectives were not pursued: 
 

• No iterator class was defined for SimData or its derivatives. This is not expected to impact 
performance of the existing package. 

 
• No SimData instance methods exist for converting among the native binary file and other 

potentially useful file formats such as comma-delimited text, XML, etc. The host 
organization currently has no defined use case for this capability. (See Data Tools 
subsections in this paper for API-level data extraction, manipulation, and format conversion 
utilities.) 
 

• The Record/Playback Simulator package was not fully integrated into the host 
organization’s normal business activities. That task may be accomplished by others at some 
later time. 
 

 
File compression 
 
On the 1.25 MB Record/Playback test file, the SimZip utility improved the compression factor by 
about 14% relative to that of the basic LZMA utility. 
 

Size, bytes File name Compress  
    factor Comment 

871,919 original.cim 1.43 SimZip (pre-compression + LZMA) 

997,397 original.lzma 1.25 standard LZMA compression 

1,250,130 original.sim 1.00 uncompressed file 

 
Figure 8d - SimZip improved compression of a Record/Playback file 

 
The file was recorded during a session while the physical instrument was continuously triggering 
sweeps, but the Instrument State and signal inputs changed rarely. This yielded a large proportion of 
repeated sweeps, creating a file that is quite amenable to the pre-compressor’s bag of tricks. In the 
Design section of this paper, we estimated a compression factor in the range 1.3 to 1.5 for the 
SimZip utility. It seems likely that the performance reported here represents the higher end of what 
can be realized with this first incarnation of SimZip. 
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Another file characteristic that could degrade compression performance is the presence of odd-sized 
sweep headers or diverse sweep sizes. SimZip will encode and decode such files successfully, but 
with some variable cost.  
 
No effort was made to optimize the time performance of SimZip. Encoding is slow; decoding is 
slower. Using my vintage-2003 desktop PC with AMD Athlon processor and 768 MB RAM, 
encoding followed immediately by decoding of the 1.25 MB file takes about 35 seconds39. It is 
likely that future optimization can cut this performance penalty by a factor of 2 to 10. 
 
It should be noted also (while comparing SimZip to basic LZMA) that there is virtually no chance 
of picking a random file of any type and having SimZip compress it successfully. SimZip works 
only on the rollout version of Record/Playback Simulator files. 
 
Simulator files have version labeling in the file header. The SimZip encoder does not check this 
label explicitly, but it checks the values of certain data fields against their expected format, and 
raises a “bad format” exception if anything is found to be amiss. It also places SimZip versioning 
information in the encoded file’s header. The SimZip decoder checks this version information and 
also verifies the format of encountered fields, raising a “bad format” exception as needed. 
 
 
Summary 
 
Our implementation of the Record/Playback Simulator faithfully reproduces recorded Samples. The 
method can be a boon for any software-driven Instrument scenario that relies on consistently precise 
Sample input. 
 
SimZip, a custom file compression utility for Simulator files, has been carefully tested and is 
provided with the intent of being production-ready. The time performance limitation of SimZip 1.0 
should be noted, though. 
 
 
 
 

                                                 
39 With the same file on the same hardware, LZMA alone runs the same test in about 5 seconds. 
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DISCUSSION 
 
With the 21st century well underway, our global civilization engages the opportunity of crisis on 
multiple fronts. Enmeshed challenges of climate change, energy production and conservation, 
economic upheaval and realignment, health and environmental stewardship place the significance of 
test and measurement technologies firmly on a nondecreasing trajectory with time. 
 
Today’s test and measurement systems, moreover, represent the convergence of engineering, 
physical, and information sciences. A common thread among these fields is uncompromising 
interdependence within the whole. The observable world is analog in nature; the observed world is 
digital. 
 
In test and measurement, software technologies organize activity similarly as confidence networks 
in the financial markets, neuronal patterns in the animal brain, and molecular circuits in systems 
biology. The burgeoning adolescences of embedded computing, digital signal processing, and 
object-oriented design have multiplied the powers of hardware engineers, but developments in 
measurement technology in turn made these developments feasible. The continuing interplay of 
hardware, software, and fundamental science advances resolving power at the point of physical 
measurement while yielding ever more sophisticated analytical and knowledge-management 
structures. 
 
Software development should not dominate the efforts of hardware engineers - but on the whole, 
information science tends inexorably into the core of test and measurement. 
 
 
Role of the Record/Playback method 
 
A review of the above pictorial comparisons (Figures 10 - 14) may suggest a range of potential 
applications of the Record/Playback method in software-intensive test and measurement 
technologies. The leverage provided by this method is in consistently being able to have the 
Instrument software respond to an exactly determined sequence of Samples representing real 
or modeled system-under-test (DUT) characteristics. Noise and systematic error differences 
between separate runs of the same procedure, can simply be eliminated. 
 
As suggested earlier, known applications for the Record/Playback method include testing 
Instrument software offline or in the context of complex instrumentation setups. Given a well-
matched set of conditions, moreover, the Record/Playback method might be used effectively within 
a larger scenario of developing a stimulus/response model of a given DUT, interfacing with other 
simulation tools, or providing standard currency for Sample processing in automated testing setups. 
Let us briefly visit each of these scenarios. 
 
 
Software testing 
 
Anyone who has dabbled in technology testing - even in a rudimentary scenario - understands the 
need for a disciplined approach. A rule of thumb is, “Change only one thing at a time.” When one 
wishes to test a certain software modification, for example, a winning strategy might be first to use 
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a specific data set to test the unmodified software, then test again using the same data set together 
with the modified software. The only thing that should change in this scenario is the software itself. 
 
If the software under modification performs tasks for which variation in observable results is 
comparable in magnitude to expected variation produced by sample noise or instrument drift, then 
to “change only one thing at a time” may become a thorny challenge. 
 
Suppose, for example, that a certain Instrument software module takes a Sample stream as input, 
and yields a random process as observable output. Suppose one wants to determine the effect of an 
algorithm modification on the variance of the output process. If many Sample streams are 
introduced and the output process monitored, what component of the output variance is due to the 
modification, and what component is due to variance in the population of Sample input streams? If 
the latter variance can be held to a known constant value (zero, perhaps) then there is hope for 
determining the former variance. An implementation of the Record/Playback Simulator could be 
used to provide such a well-defined set of Sample streams. 
 
In some test and measurement field applications, the reliability of custom setups may determine the 
success or failure of project activities. For example, there may be numerous physical connector port 
surfaces that represent precision measurement planes, all of which must be carefully characterized 
in a system calibration model. If software configuration or programming changes need to be tested 
under these conditions, it could be very useful to record a set of “golden” Sample streams derived 
from a “known good” calibration model, and use this set repeatedly in testing. With testing done 
incrementally, iteratively, or over an extended period of time, costly recalibration procedures can be 
circumvented. 
 
 
Model development 
 
In general, the Instrument and its Record/Playback Simulator may capture both stimulus and 
response sample values measured close to the DUT access port(s). Recorded streams of Sample 
vectors might be useful as part of an overall effort to model DUT performance. If the performance 
domain is linear and quality standards permit, the derived transfer function or impulse response 
could be used to simulate DUT performance over some regions of interest, reducing the need for 
costly exhaustive testing and processing of measurement data40. 
 
 
Applying custom data streams 
 
Many above references to “the Instrument software” actually generalize to any process that operates 
on streams of vectors representing raw sample data. With appropriate support including file format 
conversion tools, custom Sample streams could be built algorithmically and filed in the same 
manner used to Record physical DUT data. We mentioned this above in the context of software 
testing associated with product development and custom field applications. 
 
Such custom data sets also might be used in automated test scenarios that target the Instrument in 
production. Since the Simulator software is integrated with the Instrument software application, 
                                                 
40 For an example of using derived signal data to simulate DUT characteristics, see Trinh and Tran. 
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each Instrument is capable of translating correctly formatted files into Sample streams and 
processing these as if the Samples had been obtained from a DUT. Moreover, these Sample streams 
can be specified free of noise and drift. This method may open a door to new cost efficiencies in 
production testing. 
 
Similarly, algorithmic or DUT-derived Sample streams might be used to develop signals that could 
serve as input to downstream simulation or modeling processes. For example, a noise-free wireless 
channel simulation could be mediated by a file containing a set of Sample streams. These data, 
perhaps with appropriate translation, might be catered to another simulation system that adds 
features to the channel. 
 
 
Summary 
 
We have described the Record/Playback Simulator and suggested some ways that the method can 
empower test and measurement instrumentation projects while supporting cost management. A 
simple design was carefully implemented and verified at an industrial facility. 
 
An integrated test and measurement system including Record/Playback Simulator capabilities might 
include one or more Instrument Platforms connected with other functional blocks shown in the 
following diagram. 
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Sample streams could be physically captured from the DUT or algorithmically generated, and 
stored locally or remotely. Software development, production test, field operations, simulation, or 
feed-forward test and measurement applications could be supported by these recorded Sample 
streams41. 
 
 

                                                 
41 For a real-world example of an integrated system of modest complexity, see Nelson, R. Sep 2003. 
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GLOSSARY OF SPECIAL-USAGE TERMS 
 

 
Sample collection of signal sample values that represents a single measurement event 

(data point) 
 

Sweep  ordered sequence of Samples associated with a sweep event performed by the 
instrument hardware 
 

Simulator a Record/Playback DUT Simulator software system 
 

Instrument a software system that interfaces with a Simulator, and processes Samples 
 

State subset of Instrument state variables that are critical for Simulator performance 
 

Operator human or program control of Instrument & Simulator 
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